Focus topic (A): Numerical modeling group ## MHD models | | BATS-R-US
(e.g., Ma+ 2002) | REPPU-
Planets
(Terada+ 2009) | MAESTRO
(Sakata+ in prep) | GAMERA
(Zhang+ 2019) | |-------------------|-------------------------------|-------------------------------------|-------------------------------|----------------------------| | Model | MS, MF &
MFPe | MS | MS, MF &
MFPe | MF & MFPe | | lon
species | 4 species (recently 5) | 14 species | 5 species | 4 species | | Grid | Spherical | Unstructured
Triangle | Cubed sphere | Spherical | | Radial
res. | 5 – 600 km
(non-uniform) | 4 – 1000 km
(non-
uniform) | 3 – 3100 km
(non-uniform) | > 10 km
(non-uniform) | | Spatial res. | 3 deg. | 3 – 4 deg. | 2.7 – 3.6 deg. | 2.8 – 5.6 deg. | | Crustal
fields | Yes | No. It will be implemented | It started to be implemented. | No. It will be implemented | # Focus topic (A): Numerical modeling group ## **Monte Carlo models** #### **Emission lines** - CO₂⁺ FDB (~430 nm), CO 4th Positive bands, CO Cameron bands, O 130.4 nm, and 135.6 nm emissions. (M-MATISSE, MAVEN, EMM) - Radiative transfer should be solved for optically thick lines such as O 130.4 nm emissions. (EMM) ### **Coupling with MHD models** - Carefully determining the boundary condition. - Interpolation method of magnetic fields. # Coupling Sinuous aurora Discrete aurora Diffuse aurora Coupling Pick-up ions # **Photochemical model** ### **Coupling with MHD models** - Developing a unified subroutine, which can be easily implemented into MHD models. - Reaction analysis scheme should be developed to identify which reactions are important. ### MHD models #### **Aurora-related simulation** #### 1. Reconnection - Current models are around 3° horizontal resolution. Finer grid should be used for reconnection. - GAMERA: Suitable for particle tracing (div-B free). - Hall-MHD + PIC simulation or a PIC in a small area seems good for discrete aurora. - Div-B method is important in the magnetic field configuration. - How to simulate potential drops? #### 2. Nightside ionization - Electron impact ionization is important, and it depends on not only N_n and T_e but also B field direction and strength. - Electron pitch angle and magnetic mirror ratio might be important factors. #### **Atmospheric escape modeling** - 1. Important species to be added - C⁺, N⁺, NO⁺, hydrocarbon group, water group, and isotope ratio (D/H, ¹⁸O/¹⁶O, ¹³C/¹²C).